
Optimal Stopping via
Randomized Neural Networks

Calypso Herrera1 Florian Krach1 Pierre Ruyssen2

Josef Teichmann1

March 29, 2022

1Department of Mathematics, ETH Zurich
2Google Brain, Google Zurich



State-of-the-art and Machine Learning Algorithms

Backward recursion using basis functions
Tsitsiklis and Van Roy (2001)
Longstaff and Schwartz (2001)

Backward recursion using neural networks
Kohler et al. (2010)
Lapeyre and Lelong (2021) and Becker et al. (2020)
Becker et al. (2019)

Reinforcement learning
Tsitsiklis and Van Roy (2001) and Li et al. (2009)



American option pricing is an optimal stopping problem
The price Un of the discretized American option at time n can be
expressed through the Snell envelope

UN := g(XN),

Un := max
(
g(XN)︸ ︷︷ ︸
payoff

, E[αUn+1 |Xn]︸ ︷︷ ︸
continuation value

)
, 0 ≤ n < N ,

where α is the step-wise discounting factor.
This can equivalently be expressed as the optimal stopping problem

Un = supτ∈Tn E[α
τ−ng(Xτ ) |Xn],

where Tn is the set of all stopping times τ ≥ n. The smallest optimal
stopping time is given by

τN := N,

τn :=

{
n, if g(Xn) ≥ E[αUn+1 |Xn],

τn+1, otherwise.

The price at initial time is

U0 = max (g(X0),E[ατ1g(Xτ1)]) .



Monte Carlo Simulation

m realizations of the stock paths are sampled, where the i-th
realization is denoted by x i = (x0, x

i
1, . . . , x

i
N), with the fixed initial

price x0.
For each realization i , the cash flow pi realized by the holder when
following the stopping strategy is given by the backward recursion

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cn(x i

n)}︸ ︷︷ ︸
exercise

+ cn(x
i
n)︸ ︷︷ ︸

continuation value

1{g(x i
n)<cn(x i

n)}︸ ︷︷ ︸
continue

.

As pi1 are samples of ατ1−1g(Xτ1), by the strong law of large
numbers we have that almost surely

U0 = max

(
g(X0), lim

m→∞

1
m

m∑
i=1

αpi1

)
.



The continuation value is only used for the stopping decision

Tsitsiklis and Van Roy (2001)

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cn(x i

n)}︸ ︷︷ ︸
exercise

+ cn(x
i
n)︸ ︷︷ ︸

continuation value

1{g(x i
n)<cn(x i

n)}︸ ︷︷ ︸
continue

Longstaff and Schwartz (2001) use the approximated continuation
value only for the stopping decision.

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cn(x i

n)}︸ ︷︷ ︸
exercise

+ αpin+1︸ ︷︷ ︸
discounted future price

1{g(x i
n)<cn(x i

n)}︸ ︷︷ ︸
continue



The continuation value is approximated by a linear
combination of features

Longstaff and Schwartz (2001)

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cn(x i

n)}︸ ︷︷ ︸
exercise

+ αpin+1︸ ︷︷ ︸
discounted future price

1{g(x i
n)<cn(x i

n)}︸ ︷︷ ︸
continue

The continuation value is approximated by linear combination of basis
functions,

cn(x) = E (αUn+1|xn = x) ≈
n∑

i=1

θi fi (x) = θ>f (x)

where the parameters θ are found by minimizing the loss function

ϕ(θn) =
N∑
i=1

(
cθn(x

i
n)− αpin+1

)2
using a linear regression at each date n ∈ {N − 1, . . . , 1}.



The continuation value is approximated by a neural network

Kohler et al. (2010) approximate the continuation value in (Tsitsiklis
and Van Roy, 2001) by a neural network.

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cθn (x i

n)}︸ ︷︷ ︸
exercise

+ cθn(x
i
n)︸ ︷︷ ︸

continuation value

1{g(x i
n)<cθn (x

i
n)}︸ ︷︷ ︸

continue

The continuation value is now approximated by a neural network

cn(x) ≈ cθn(x)

where the parameters θn are found by minimizing the loss function

ϕ(θn) =
N∑
i=1

(
cθn(x

i
n)− αpin+1

)2
.

using a gradient descent method at each date n ∈ {N − 1, . . . , 1}.



The continuation value is approximated by a neural network

Lapeyre and Lelong (2021) and Becker et al. (2020) approximate the
continuation value in (Longstaff and Schwartz, 2001) by a neural
network.

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cθn (x i

n)}︸ ︷︷ ︸
exercise

+ αpin+1︸ ︷︷ ︸
discounted future price

1{g(x i
n)<cθn (x

i
n)}︸ ︷︷ ︸

continue

The continuation value is now approximated by a neural network

cn(x) ≈ cθn(x)

where the parameters θn are found by minimizing the loss function

ϕ(θn) =
N∑
i=1

(
cθn(x

i
n)− αpin+1

)2
.

using a gradient descent method at each time n ∈ {N − 1, . . . , 1}.



The indicator function is approximated by a neural network

Becker et al. (2019) approximate the optimal stopping decision in
(Longstaff and Schwartz, 2001).

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cθn (x i

n)}︸ ︷︷ ︸
fθn(x)

+ αpin+1︸ ︷︷ ︸
discounted future price

1{g(x i
n)<cθn (x

i
n)}︸ ︷︷ ︸

1− fθn(x)

The indicator function is now approximated by a neural network

1{g(x i
n)≥cθn (x i

n)} ≈ fθn(x)

where the parameters θn are found by minimizing maximizing the loss
function

ϕ(θn) =
N∑
i=1

αpin+1 .

using a gradient descent method at each time n ∈ {N − 1, . . . , 1}.



Randomized Least Squares Monte Carlo (RLSM)
We propose to use a randomized neural network to approximate the
continuation value in (Longstaff and Schwartz, 2001).

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cθ(x i

n)}︸ ︷︷ ︸
exercise

+ αpin+1︸ ︷︷ ︸
discounted future price

1{g(x i
n)<cθ(x i

n)}︸ ︷︷ ︸
continue

For each date n, going backward, the continuation value is
approximated by a neural network

cθn(x) = A>n σ(Ax + b) + bn

where the parameters of the hidden layer (A,b) are randomly chosen
and not optimized
and only the parameters of the last layer θn = (An, bn) are optimized
by minimizing the loss function

ψn(θn) =
m∑
i=1

(
cθn(x

i
n)− αpin+1

)2
. (1)



Randomized Least Squares Monte Carlo (RLSM)

Algorithm 1 Optimal stopping via randomized least squares Monte Carlo (RLSM)

Input: discount factor α, initial value x0
Output: price p0
1: sample a random matrix A ∈ R(K−1)×d and a random vector b ∈ RK−1

2: simulate 2m paths of the underlying process (x i1, . . . , x
i
N) for i ∈ {1, . . . , 2m}

3: for each path i ∈ {1, . . . , 2m}, set piN = g(x iN)
4: for each date n ∈ {N − 1, . . . , 1}

a: for each path i ∈ {1, . . . , 2m}, set φ(x in) = (σ(Ax in + b)>, 1)> ∈ RK

b: set θn = α
(∑m

i=1 φ(x
i
n)φ
>(x in)

)−1 (∑m
i=1 φ(x

i
n)p

i
n+1
)

c: for each path i ∈ {1, . . . , 2m}, set pin = g(x in)1g(x i
n)≥θ>n φ(x i

n)
+αpn+11g(x i

n)<θ
>
n φ(x

i
n)

5: set p0 = max(g(x0),
1
m

∑2m
i=m+1 αp

i
1)

Theorem (informal)
As the number of sampled paths m and the number of random basis
functions K go to ∞, the price p0 computed with Algorithm 1 converges
to the correct price of the Bermudan option.



Max Call on Black Scholes with RLSM

Figure: Mean ± standard deviation (bars) of the price for a max-call on 5 stocks
following the Black Scholes model for RLSM for varying the number of paths m
and the number of neurones in the hidden layer K .



An alternative to the backward recursion

Instead of having a different function approximator for each date, we
use the same function approximator for all dates

Cn(xn) ≈ Cθ(n, xn) ∀n ∈ {1, . . . ,N − 1}

The algorithm is initialized with a parameter vector θ0, and after one
sample path the parameter vector is updated following

θn+1 = θn + α∇ϕ(θ)

This is the principle of Reinforcement Learning.
We first make some random optimal stopping decisions and then we
reinforce our learning over the iterations.
This is not new! The first who introduce the reinforcement learning
for the optimal stopping were Tsitsiklis and Van Roy (2001).



Fitted Q-learning (FQI)

Tsitsiklis and Van Roy (2001) use the fitted Q-iteration where the
continuation function is approximated by a linear combination of basis
functions (Li et al., 2009).

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
Payoff

1{g(x i
n)≥cθ(n,x i

n)}︸ ︷︷ ︸
exercise

+ cθ(n, x
i
n)︸ ︷︷ ︸

continuation value

1{g(x i
n)<cθ(n,x i

n)}︸ ︷︷ ︸
continue

The continuation value is approximated by a linear combination of
basis functions cθ(n, xn) ≈ θT f (n, x)
Where the parameters θ are found by minimizing the loss

ϕ(θ) =
m∑
i=1

N∑
n=1

(
cθ(n, x

i
n)− αpin+1

)2



Randomized Fitted Q-Iteration (RFQI)
We propose to approximate the continuation value in the
fitted-Q-iteration by a randomized neural network.

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cθ(x i

n)}︸ ︷︷ ︸
exercise

+ cθ(x
i
n)︸ ︷︷ ︸

continuation value

1{g(x i
n)<cθ(x i

n)}︸ ︷︷ ︸
continue

As for reinforcement learning algorithms, we first fix the parameters
θ0 and then we update them θ1, θ2, . . . through multiples iterations.
For all dates n, the continuation value is approximated by a neural
network

cθ(x̃) = A>2 σ(Ax̃ + b) + b2

where x̃n = (n, xn).
where the parameters of the hidden layer (A,b) are randomly chosen
and not optimized
and only the parameters of the last layer θ = (A2, b2) are optimized
by minimizing the loss function

ψ(θ) =
N∑

n=1

m∑
i=1

(
cθn(x̃

i
n)− αpin+1

)2
. (2)



Algorithm 2 Optimal stopping via randomized fitted Q-Iteration (RFQI)

Input: discount factor α, initial value x0
Output: price p0
1: sample a random matrix A ∈ R(K−1)×(d+2) and a random vector b ∈ RK−1

2: simulate 2m paths of the underlying process (x i1, . . . , x
i
N) for i ∈ {1, . . . , 2m}

3: initialize weights θ = 0 ∈ RK

4: for each iteration ` until convergence of θ
a: for each path i ∈ {1, . . . , 2m},

i: set piN = g(x iN)
ii: for each date n ∈ {1, . . . ,N − 1},

set φ(n, x in) = (σ(Ax̃ in + b), 1) ∈ RK

set pin = max(g(x in), φ(n, x in)>θ)

b: set θ = α
(∑N

n=1
∑m

i=1 φ(n, x
i
n)φ
>(n, x in)

)−1
·
(∑N

n=1
∑m

i=1 φ(n, x
i
n)p

i
n+1

)
∈ RK

5: set p0 = max(g(x0),
1
m

∑2m
i=m+1 αp

i
1)

Theorem (informal)
As the number of iterations L, the number of sampled paths m and the
number of random basis functions K go to ∞, the price p0 computed with
Algorithm 2 converges to the correct price of the Bermudan option.



Max Call on Black Scholes with RFQI

Figure: Mean ± standard deviation (bars) of the price for a max-call on 5 stocks
following the Black Scholes model for RFQI for varying the number of paths m.



Experimental Setup

Besides our algorithms, we also implemented the baselines and provided all
of them at https://github.com/HeKrRuTe/OptStopRandNN.

We compare RLSM and RFQI to three backward induction algorithms
the state-of-the-art Least Squares Monte Carlo (LSM) (Longstaff and
Schwartz, 2001)
Neural Least Squares Monte Carlo (NLSM) (Lapeyre and Lelong,
2021)
Deep Optimal Stopping (DOS) (Becker et al., 2019)

and one reinforcement learning approach
fitted Q-iteration (FQI) (Tsitsiklis and Van Roy, 1997)

We used the classical polynomial basis functions up to the second
order.
No Regularization for LSM and FQI

https://github.com/HeKrRuTe/OptStopRandNN


Architecture of Neural Networks 1/2

In order to have a fair comparison in terms of accuracy and in terms of
computation time, we use the same number of hidden layers and nodes per
layer for all the algorithms.

As we observed that one hidden layer was sufficient to have a good
accuracy (an increase of the number of the hidden layers did not lead
to an improvement of the accuracy), we use one hidden layer.
Therefore, the NLSM, DOS, and all algorithms that we proposed have
only one hidden layer.
We use 20 nodes for the hidden layer. For RFQI the number of nodes
is set to the minimum between 20 and the number of stocks for
stability reasons.
Leaky ReLU is used for RLSM and RFQI and tanh for the randomized
recurrent neural network RRLSM(see below). For NLSM and DOS,
we use the suggested activation functions, Leaky ReLU for NLSM and
ReLU and sigmoid for DOS.



Architecture of Neural Networks 2/2

The parameters (A, b) of the random neural networks of RLSM and
RFQI are sampled using a standard normal distribution with mean 0
and standard deviation 1. Different hyper-parameters were tested, but
they didn’t have a big influence on the results so we kept the
standard choice.
For the randomized recurrent neural network of RRLSM, we use a
standard deviation of 0.0001 for Ax and 0.3 for Ah. Also here
different hyper-parameters were tested, and the best performing were
chosen and used to present the results. The same holds for tested
path-dependent versions of RFQI , however, none of the
hyper-parameters performed very well as shown below.
Some of the reference methods suggest to use the payoff as additional
input, while others do not or leave this open. Therefore, we tested
using the payoff as input and not using it for each method in each
experiment. We came to the conclusion that the backward induction
algorithms (LSM, DOS, RLSM) usually work slightly better with,
while the reinforcement learning algorithms (FQI, RFQI) usually work
slightly better without the payoff. Hence, we show these results.



Max call option on Black–Scholes

0 250 500 750 1000 1250 1500 1750 2000

40

60

80
pr

ice

0 250 500 750 1000 1250 1500 1750 2000
number of stocks d

0

50

100

150

tim
e 

(s
)

DOS
FQI
LSM
NLSM
RFQI
RLSM
EOP

Figure: At the money max call option without dividend on Black–Scholes.



Max call option on Black–Scholes

0 250 500 750 1000 1250 1500 1750 2000
20

40

60

80

pr
ice

0 250 500 750 1000 1250 1500 1750 2000
number of stocks d

0

100

200

300

tim
e 

(s
)

DOS
FQI
LSM
NLSM
RFQI
RLSM

Figure: At the money max call option with dividend on Black–Scholes.



We have very similar results for the other experiments we conducted:
Heston, Rough Heston
Min Put, Geometric Put, Basket Call

Moreover, our methods work well to compute Greeks ...



Computation of Greeks 1/2

Most popular Greeks: delta (∂p0
∂x0

), gamma (∂
2p0
∂x2

0
), theta (∂p0

∂t ), rho (∂p0
∂r )

and vega (∂p0
∂σ ).

The straight forward method to compute them is via the finite
difference (FD) method.
For theta, rho and vega, the standard forward finite difference method
can be used.
In our experiments we saw, that computing delta works best when
using the central finite difference method, where the exercise
boundary is frozen to be the one of the central point.
Moreover, the computation of gamma, as a second derivative, turns
out to be unstable when computed with the second order finite
difference method, even when using the same technique as for delta.
Therefore, we use two alternative ways to circumvent this instability.



Computation of Greeks 2/2

As reference we use the binomial model with N = 50′000 equidistant
dates, for which only the finite difference method is used.
For RLSM the activation function was changed to Softplus, since this
worked best, although all other tested activation functions did also
yield good results. For NLSM and DOS the computation of theta
(and therefore also gamma when using the PDE method), rho and
vega was unstable.

price delta gamma theta rho vega
K algo FD regr. FD regr. PDE regr.

36 B 0.9192 (–) -0.1982 (–) 0.0389 (–) -0.7152 (–) -0.6188 (–) 10.9106 (–)
36 LSM 0.9032 (0.0093) 0.8993 (0.0061) -0.1925 (0.0012) -0.1911 (0.0026) 0.0374 (0.0003) 0.0388 (0.0006) -0.6803 (0.0063) -0.6471 (0.0067) 10.7306 (0.0797)
36 RLSM 0.9092 (0.0067) 0.9063 (0.0057) -0.1952 (0.0027) -0.1922 (0.0035) 0.0378 (0.0004) 0.0378 (0.0007) -0.6877 (0.0067) -0.6491 (0.0126) 10.8385 (0.0863)
36 FQI 0.8533 (0.0108) 0.8622 (0.0081) -0.1779 (0.0017) -0.1785 (0.0041) 0.0338 (0.0003) 0.0331 (0.0008) -0.6037 (0.0064) -0.8007 (0.0130) 10.4100 (0.0973)
36 RFQI 0.8980 (0.0100) 0.8741 (0.0113) -0.1953 (0.0085) -0.1847 (0.0038) 0.0377 (0.0012) 0.0366 (0.0010) -0.6846 (0.0191) -0.6354 (0.0354) 10.7590 (0.1674)
36 NLSM 0.8855 (0.0284) 0.8824 (0.0167) -0.2068 (0.0228) -0.1898 (0.0027) – 0.0383 (0.0011) – – –
36 DOS 0.8916 (0.0071) 0.9070 (0.0067) -0.1926 (0.0028) -0.1949 (0.0029) – 0.0379 (0.0008) – – –

The computation of Greeks is also available on
https://github.com/HeKrRuTe/OptStopRandNN.

https://github.com/HeKrRuTe/OptStopRandNN


Randomized Recurrent Least Squares Monte Carlo
We propose to use a randomized recurrent neural network in
(Longstaff and Schwartz, 2001).

piN = g(x iN)

pin = g(x in)︸ ︷︷ ︸
payoff

1{g(x i
n)≥cθ(x i

n)}︸ ︷︷ ︸
exercise

+ αpin+1︸ ︷︷ ︸
discounted future price

1{g(x i
n)<cθ(x i

n)}︸ ︷︷ ︸
continue

The continuation value is approximated by a recurrent neural
network {

hn = σ(Axxn + Ahhn−1 + b)
cθn(hn) = A>n hn + bn

where the parameters of the hidden state (Ax ,Ah, b) are randomly
chosen and not optimized
and only the parameters of the readout map θn = (An, bn) are
optimized by minimizing the loss function

ψn(θn) =
m∑
i=1

(
cθn(x

i
n)− αpin+1

)2
.

We go forward for computing hn and backward for computing pn.



Algorithm 3 Optimal stopping via randomized recurrent neural network (RRLSM)

Input: discount factor α, initial value x0, initial latent variable h−1 = 0
Output: price p0
1: sample random matrices Ax ∈ R(K−1)×d , Ah ∈ R(K−1)×(K−1) and a
random vector b ∈ RK−1

2: simulate 2m paths of the underlying process (x i1, . . . , x
i
N) for i ∈ {1, . . . , 2m}

3: for each path i ∈ {1, . . . , 2m}, set piN = g(x iN)
4: for each date n ∈ {0, . . . ,N − 1}

a: for each path i ∈ {1, . . . , 2m}
set hin = σ(Axx

i
n + Ahh

i
n−1 + b)

5: for each date n ∈ {N − 1, . . . , 1}
a: for each path i ∈ {1, . . . , 2m}

set φin = ((hin)
>, 1)> ∈ RK

b: set θn = α
(∑m

i=1 φ
i
n(φ

i
n)
>)−1 (∑m

i=1 φ
i
np

i
n+1
)

c: for each path i ∈ {1, . . . , 2m}, set pin = g(x in)1g(x i
n)≥θ>n φi

n
+ αpin+11g(x i

n)<θ
>
n φ

i
n

6: set p0 = max(g(x0),
1
m

∑2m
i=m+1 αp

i
1)

Theorem (informal)
As the number of sampled paths m and the number of random basis
functions K go to ∞, the price p0 computed with Algorithm 3 converges
to the correct price of the Bermudan option.



Max Call on Black Scholes with RFQI

Figure: Mean ± standard deviation (bars) of the price for a max-call on 5 stocks
following the Black Scholes model for RFQI for varying the number of paths m.



Fractional Brownian Motion

Figure: Payoff identity. Algorithms processing path information outperform.
DOS: Deep Optimal Stopping (Becker et al., 2019)
pathDOS: Deep Optimal Stopping using the entire path as input
pathDOS-paper: values reported in the paper (Becker et al., 2019)
RLSM: Randomized Least Squares Monte Carlo
RRLSM: Randomized Recurrent Least Squares Monte Carlo



Fractional Brownian Motion

Figure: Reinforcement learning does not work well in non-Markovian case.
RFQI: Randomized Fitted Q-Iteration
pathRFQI: Randomized Fitted Q-Iteration
RRFQI: Randomized Recurrent Fitted Q-Iteration
pathDOS-paper: values reported in the paper (Becker et al., 2019)



Fractional Brownian Motion

Figure: Randomized Recurrent Least Monte Carlo (RRLSM) achieves similar
results as reported in deep optimal stopping, while using only 20K paths instead
of 4M for training which took only 4s instead of the reported 430s



Conclusion 1/2

Based on a broad study of machine learning based approaches to
approximate the solution of optimal stopping problems, we introduced
two simple and powerful approaches, RLSM and RFQI. As
state-of-the-art algorithms, they are very simple to implement and
have convergence guarantees. Moreover, similarly to the neural
network methods, they are easily scalable to high dimensions and
there is no need to choose basis functions by hand. Furthermore, in
our empirical study we saw that RLSM and RFQI are considerably
faster than existing algorithms for high dimensional problems. In
particular, up to 2400 (and 4800) times faster than LSM (and FQI
respectively) with basis functions of order 2, 5 to 16 times faster than
NLSM and 20 to 66 times faster than DOS.
In our Markovian experiments, RFQI often achieves the best results
and if not, usually is very close to the best performing baseline
method under consideration, reconfirming that reinforcement learning
methods surpass backward induction methods.
In contrsat to NLSM and DOS, our methods ensure stable results for
the computation of theta, rho and vega.



Conclusion 2/2
In our non-Markovian experiments on fractional Brownian Motion,
our randomized recurrent neural network algorithm RRLSM achieves
similar results as the path-version of DOS, while requiring less
training data and being much faster. However, this example also
brought up the limitations of reinforcement learning based approaches,
in particular of RFQI, which do not work well in those non-Markovian
experiments.
In our non-Markovian experiments on rough Heston, we concluded
that there is no need of using a recurrent neural network, since RLSM
has similar results as RRLSM. This is also the case with DOS and
pathDOS.
Overall, the speed of our algorithms is very promising for applications
in high dimensions and with many discretization times, where existing
methods might become impractical and where our methods show very
reliable performance.
To summarize, we suggest to use RFQI for Markovian problems,
RLSM for non-Markovian processes which do not have a strong
path-dependence, as the stock price of rough Heston and finally
RRLSM for non-Markovian processes which have a strong
path-dependence like fractional Brownian Motion.



Optimal Stopping via Randomized Neural Networks

The paper is avaible on https://arxiv.org/abs/2104.13669

The code is avaible on
https://github.com/HeKrRuTe/OptStopRandNN

https://arxiv.org/abs/2104.13669
https://github.com/HeKrRuTe/OptStopRandNN


Thank you

for your attention



Bibliography I

Becker, S., Cheridito, P., and Jentzen, A. (2019). Deep optimal stopping.
Journal of Machine Learning Research, 20:74.

Becker, S., Cheridito, P., and Jentzen, A. (2020). Pricing and hedging
american-style options with deep learning. Journal of Risk and Financial
Management.

Kohler, M., Krzyżak, A., and Todorovic, N. Z. (2010). Pricing of
high-dimensional american options by neural networks. Wiley-Blackwell:
Mathematical Finance.

Lapeyre, B. and Lelong, J. (2021). Neural network regression for
bermudan option pricing. Monte Carlo Methods and Applications.

Li, Y., Szepesvari, C., and Schuurmans, D. (2009). Learning exercise
policies for american options. In International Conference on Artificial
Intelligence and Statistics.

Longstaff, F. A. and Schwartz, E. S. (2001). Valuing american options by
simulation: a simple least-squares approach. Review of Financial
Studies.



Bibliography II

Tsitsiklis, J. and Van Roy, B. (1997). Optimal stopping of markov
processes: Hilbert space theory, approximation algorithms, and an
application to pricing high-dimensional financial derivatives. IEEE
Transactions on Automatic Control, 44:1840–1851.

Tsitsiklis, J. and Van Roy, B. (2001). Regression methods for pricing
complex american-style options. IEEE Transactions on Neural Networks,
12(4):694–703.


	Introduction
	Optimal Stopping via Backward Recursion
	Least Squares Monte Carlo
	Neural Least Squares Monte Carlo
	Deep Optimal Stopping
	Randomized Least Squares Monte Carlo

	Reinforcement Learning
	An alternative to the backward recursion
	Fitted Q-iteration
	Randomized Fitted Q-Iteration (RFQI)

	Non-Markovian Problems
	Randomized Recurrent Least Squares Monte Carlo (RRLSM)


